Step 1: Calculate cell constant.
Conductivity (\(\kappa\)) = Cell constant / Resistance.
For 0.1 M KCl:
\[
1.29 = \frac{\text{Cell constant}}{100} \quad \Rightarrow \quad \text{Cell constant} = 129 \, m^{-1}
\]
Step 2: Find conductivity for 0.02 M KCl.
\[
\kappa = \frac{\text{Cell constant}}{R} = \frac{129}{500} = 0.258 \, S \, m^{-1}
\]
Step 3: Find molar conductivity.
\[
\Lambda_m = \frac{\kappa \times 1000}{C} = \frac{0.258 \times 1000}{0.02 \times 1000} = 12.9 \, S \, cm^2 \, mol^{-1}
\]
Step 4: Conclusion.
Conductivity = \(\mathbf{0.258 \, S \, m^{-1}}\), Molar conductivity = \(\mathbf{12.9 \, S \, cm^2 \, mol^{-1}}\).