The molar conductivity (\(\Lambda_m\)) can be calculated using the formula:
\[
\Lambda_m = \frac{k}{M} \times 1000
\]
Where:
- \(k\) is the conductivity,
- \(M\) is the molarity of the solution.
First, calculate the conductivity (\(k\)) using the given values:
\[
k = \frac{1}{R} \times L/A = \frac{G}{R}
\]
Where:
- \(R = 100 \, \Omega\),
- \(G = 0.0354 \, \text{cm}^{-1}\).
Thus:
\[
k = \frac{1}{100} \times 0.0354 = 3.54 \times 10^{-4} \, \Omega^{-1} \, \text{cm}^{-1}.
\]
Now, calculate \(\Lambda_m\) using the formula:
\[
\Lambda_m = \frac{3.54 \times 10^{-4}}{0.05} \times 1000 = 7.08 \, \text{S cm}^2 \, \text{mol}^{-1}.
\]
The molar conductivity of the acetic acid solution is \(7.08 \, \text{S cm}^2 \, \text{mol}^{-1}\).