1. Recall the relationship between resistance, conductivity, and cell constant
The relationship between resistance (R), conductivity (κ), and cell constant (G*) is given by:
$R = \frac{1}{\kappa} \times G^*$
where:
- $R$ is the resistance in ohms (Ω)
- $κ$ (kappa) is the conductivity in Siemens per centimeter (S cm-1)
- $G^*$ is the cell constant in cm-1
2. Rearrange the formula to solve for the cell constant
We need to find the cell constant, so we rearrange the formula:
$G^* = R \times \kappa$
3. Substitute the given values
We are given:
- $R = 1500$ Ω
- $κ = 0.146 \times 10^{-3}$ S cm-1
Substitute these values into the formula:
$G^* = 1500 \times (0.146 \times 10^{-3})$ cm-1
4. Calculate the cell constant
$G^* = 1500 \times 0.000146$ cm-1
$G^* = 0.219$ cm-1
Final Answer:
(A) 0.219
The conductivity (κ) is related to resistance (R) and the cell constant (K) by the equation:
\(κ = K × (\frac 1R)\)
Substitute the given values:
\(0.146 × 10^{–3} = K × (\frac {1}{1500})\)
Solve for K:
\(K = (0.146 × 10^{–3}) × 1500\)
\(K = 0.219\)
The correct answer is (A) : 0.219.
Consider the following electrochemical cell at \(298\,\text{K}\):
\[ \text{Pt} \, | \, \mathrm{HSnO_2^- (aq)} \, | \, \mathrm{Sn(OH)_6^{2-} (aq)} \, | \, \mathrm{OH^- (aq)} \, | \, \mathrm{Bi_2O_3 (s)} \, | \, \mathrm{Bi (s)} \] If the reaction quotient at a given time is \(10^6\), then the cell EMF (\(E_{\text{cell}}\)) is _________ \( \times 10^{-1} \) V (Nearest integer).
Given:
\[ E^\circ_{\mathrm{Bi_2O_3/Bi,OH^-}} = -0.44\ \text{V}, \quad E^\circ_{\mathrm{Sn(OH)_6^{2-}/HSnO_2^-,OH^-}} = -0.90\ \text{V} \]
If E$_{cell}$ of the following reaction is x $\times$ 10$^{-1}$. Find x
\(\text{Pt/ HSnO$_2$ / Sn(OH)$_6^{2-}$, OH$^-$ / Bi$_2$O$_3$ / Bi / Pt}\)
\(\text{[Reaction Quotient, Q = 10$^6$]}\)
Given \( E^o_{\text{[Sn(OH)$_3$]}} \) = -0.90 V, \( E^o_{\text{Bi$_2$O$_3$ / Bi}} \) = -0.44 V
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2