Step 1: The charge passing through the conductor is given by the integral of the current with respect to time:
\[
Q = \int_{t_1}^{t_2} i \, dt = \int_{2}^{10} (12t + 9t^2) \, dt
\]
\[
Q = \left[ 6t^2 + 3t^3 \right]_2^{10}
\]
\[
Q = \left( 6 \times 10^2 + 3 \times 10^3 \right) - \left( 6 \times 2^2 + 3 \times 2^3 \right)
\]
\[
Q = (600 + 3000) - (24 + 24) = 3600 - 48 = 3552 \, \text{C}
\]
Thus, the charge passing through the conductor is \( \boxed{3552 \, \text{C}} \).
\bigskip