Concept:
For first order reaction:
\[
t_{1/2} = \frac{0.693}{k}
\]
Temperature dependence of rate constant is given by Arrhenius equation:
\[
\ln\frac{k_2}{k_1} = \frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)
\]
Step 1: Calculate \(k_1\) at \(500\,\text{K}\)
Given:
\[
t_{1/2} = 2\,\text{hrs}
\]
\[
k_{1,500} = \frac{0.693}{2} = 0.3465\,\text{hr}^{-1}
\]
Step 2: Rate Constant of Reaction 1 at \(300\,\text{K}\)
Given:
\[
k_{1,300} = \frac{1}{2} k_{1,500}
\]
\[
k_{1,300} = 0.17325\,\text{hr}^{-1}
\]
Step 3: Relation Between \(k_1\) and \(k_2\)
At \(500\,\text{K}\):
\[
k_{2,500} = 2k_{1,500}
\]
Using Arrhenius relation:
\[
\ln\frac{k_{2,300}}{k_{2,500}} =
\frac{E_{a2}}{R}\left(\frac{1}{500}-\frac{1}{300}\right)
\]
But since:
\[
E_{a2} = \frac{E_{a1}}{2}
\quad \text{and} \quad
\ln\frac{k_{1,300}}{k_{1,500}} =
\frac{E_{a1}}{R}\left(\frac{1}{500}-\frac{1}{300}\right)
\]
Therefore:
\[
\ln\frac{k_{2,300}}{k_{2,500}} =
\frac{1}{2}\ln\frac{k_{1,300}}{k_{1,500}}
\]
\[
\frac{k_{2,300}}{k_{2,500}} =
\sqrt{\frac{k_{1,300}}{k_{1,500}}}
= \sqrt{\frac{1}{2}}
\]
\[
k_{2,300} = 2k_{1,500} \times \frac{1}{\sqrt{2}}
= \sqrt{2}\,k_{1,500}
\]
Step 4: Numerical Value
\[
k_{2,300} \approx \sqrt{2} \times 0.3465 \approx 0.49
\]
\[
10 \times k_{2,300} \approx 4.9 \approx 5
\]
\[
\boxed{10 \times (k_2)_{300\,\text{K}} = 5}
\]