\(N_2(g) + 3H_2(g)⇋2NH_3(g)\)
equilibrium constant (Kc) is:
\(K_c =\frac { [NH_3]^2}{[N_2][H_2]^3}\)
The reaction will proceed in backward direction, when Q>Kc.
The product concentration is more than equilibrium value.
The reactant concentration is less than the equilibrium value.
So, the correct option is (C): Q>Kc
The vapour pressure of H\(_2\)O at 323K is 95 mm of Hg. 176g of sucrose (Molar mass = 342 gmol\(^{-1}\)) is added to 900g of H\(_2\)O at 323K.
The vapour pressure of solution is about
Identify the major product C formed in the following reaction sequence:
The equilibrium constant may be defined as the ratio between the product of the molar concentrations of the products to that of the product of the molar concentrations of the reactants with each concentration term raised to a power equal to the stoichiometric coefficient in the balanced chemical reaction.
The equilibrium constant at a given temperature is the ratio of the rate constant of forwarding and backward reactions.
Kequ = kf/kb = [C]c [D]d/[A]a [B]b = Kc
where Kc, indicates the equilibrium constant measured in moles per litre.
For reactions involving gases: The equilibrium constant formula, in terms of partial pressure will be:
Kequ = kf/kb = [[pC]c [pD]d]/[[pA]a [pB]b] = Kp
Where Kp indicates the equilibrium constant formula in terms of partial pressures.
Medium Kc/Kp values indicate optimum product formation.
The equilibrium constant is the ratio of the concentrations raised to the stoichiometric coefficients. Therefore, the unit of the equilibrium constant = [Mole L-1]△n.
where, ∆n = sum of stoichiometric coefficients of products – a sum of stoichiometric coefficients of reactants.