The wavelength of emitted radiation in hydrogen-like atoms is given by:
\[
\frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)
\]
where:
- \( R_H \) is the Rydberg constant,
- \( n_1 \) and \( n_2 \) are the initial and final energy levels.
1. For transition \( 4 \to 2 \):
\[
\frac{1}{\lambda_{42}} = R_H \left( \frac{1}{2^2} - \frac{1}{4^2} \right)
\]
\[
= R_H \left( \frac{1}{4} - \frac{1}{16} \right)
\]
\[
= R_H \left( \frac{4}{16} - \frac{1}{16} \right) = R_H \left( \frac{3}{16} \right)
\]
\[
\lambda_{42} \propto \frac{16}{3}
\]
2. For transition \( 3 \to 2 \):
\[
\frac{1}{\lambda_{32}} = R_H \left( \frac{1}{2^2} - \frac{1}{3^2} \right)
\]
\[
= R_H \left( \frac{1}{4} - \frac{1}{9} \right)
\]
\[
= R_H \left( \frac{9}{36} - \frac{4}{36} \right) = R_H \left( \frac{5}{36} \right)
\]
\[
\lambda_{32} \propto \frac{36}{5}
\]
3. Ratio of Wavelengths:
\[
\frac{\lambda_{42}}{\lambda_{32}} = \frac{\frac{16}{3}}{\frac{36}{5}}
\]
\[
= \frac{16}{3} \times \frac{5}{36} = \frac{16 \times 5}{3 \times 36} = \frac{80}{108} = \frac{20}{27}
\]
Thus, the correct answer is \(\boxed{20:27}\).