Step 1: Use the Arrhenius equation for the rate constant.
The Arrhenius equation is given by:
\[
k = A e^{-\frac{E_a}{RT}},
\]
where:
- \( k \) is the rate constant,
- \( A \) is the pre-exponential factor,
- \( E_a \) is the activation energy,
- \( R \) is the universal gas constant,
- \( T \) is the temperature.
The ratio of rate constants at two temperatures \( T_1 \) and \( T_2 \) is:
\[
\frac{k_2}{k_1} = e^{\frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)}.
\]
Step 2: Substitute the given values.
The ratio \( \frac{E_a}{R} = 1000 \, \text{K} \), \( T_1 = 400 \, \text{K} \), and \( T_2 = 600 \, \text{K} \):
\[
\frac{k_2}{k_1} = e^{1000 \left(\frac{1}{400} - \frac{1}{600}\right)}.
\]
Step 3: Simplify the exponent.
Calculate \( \frac{1}{400} - \frac{1}{600} \):
\[
\frac{1}{400} - \frac{1}{600} = \frac{3 - 2}{1200} = \frac{1}{1200}.
\]
Thus:
\[
\frac{k_2}{k_1} = e^{\frac{1000}{1200}} = e^{0.8333}.
\]
Step 4: Calculate the exponential term.
Using \( e^{0.8333} \):
\[
\frac{k_2}{k_1} \approx 2.818.
\]
Step 5: Conclusion.
The ratio of the rate constant at \( 600 \, \text{K} \) to that at \( 400 \, \text{K} \) is \( 2.818 \).