Step 1: Use gravity formula at height \( h \)
The acceleration due to gravity at height \( h \) is:
\[
g' = g \left( \frac{R}{R+h} \right)^2.
\]
For \( h_1 = 1280 \) km:
\[
g_1 = g \left( \frac{6400}{6400+1280} \right)^2 = g \left( \frac{6400}{7680} \right)^2.
\]
\[
g_1 = g \left( \frac{5}{6} \right)^2 = g \times \frac{25}{36}.
\]
For \( h_2 = 3200 \) km:
\[
g_2 = g \left( \frac{6400}{6400+3200} \right)^2 = g \left( \frac{6400}{9600} \right)^2.
\]
\[
g_2 = g \left( \frac{2}{3} \right)^2 = g \times \frac{4}{9}.
\]
Step 2: Compute ratio \( g_1:g_2 \)
\[
\frac{g_1}{g_2} = \frac{25}{36} \div \frac{4}{9} = \frac{25}{36} \times \frac{9}{4} = \frac{25 \times 9}{36 \times 4} = \frac{225}{144} = \frac{25}{16}.
\]
Thus, the correct answer is \( \boxed{25:16} \).