The scattering efficiency of light by molecules in the atmosphere follows Rayleigh scattering, which is inversely proportional to the fourth power of the wavelength (\( \lambda \)):
\[
\text{Scattering Efficiency} \propto \frac{1}{\lambda^4}
\]
The ratio of scattering efficiencies for red and blue light is:
\[
\text{Ratio} = \frac{\left( \frac{1}{\lambda_{\text{red}}^4} \right)}{\left( \frac{1}{\lambda_{\text{blue}}^4} \right)} = \left( \frac{\lambda_{\text{blue}}}{\lambda_{\text{red}}} \right)^4
\]
Substituting the values for \( \lambda_{\text{red}} = 0.65 \ \mu m \) and \( \lambda_{\text{blue}} = 0.45 \ \mu m \):
\[
\text{Ratio} = \left( \frac{0.45}{0.65} \right)^4 = \left( 0.6923 \right)^4 = 0.2295
\]
Thus, the ratio of scattering efficiencies is:
\[
\boxed{0.23}
\]