We use the Arrhenius equation, which relates the rate constant to temperature:
\[
\ln \left( \frac{k_2}{k_1} \right) = \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right)
\]
Where:
- \( E_a = 41.5 \, \text{kJ/mol} = 41500 \, \text{J/mol} \)
- \( T_1 = 300 \, \text{K}, T_2 = 400 \, \text{K} \)
- \( R = 8.314 \, \text{J/mol K} \)
Substituting the values into the equation:
\[
\ln \left( \frac{k_2}{k_1} \right) = \frac{41500}{8.314} \left( \frac{1}{300} - \frac{1}{400} \right)
\]
\[
\ln \left( \frac{k_2}{k_1} \right) = 0.595
\]
\[
\frac{k_2}{k_1} = e^{0.595} \approx 1.809
\]
Thus, the correct answer is \( 1.809 \).