Step 1: Understanding the domain of \( f(x) = \sqrt{9 - x^2 \)}
The function \( f(x) \) is defined only when the expression inside the square root is non-negative:
\[
9 - x^2 \geq 0 \Rightarrow -3 \leq x \leq 3.
\]
Step 2: Determining the range
Now, \( f(x) = \sqrt{9 - x^2} \). The maximum value of \( f(x) \) occurs when \( x = 0 \), giving \( f(0) = \sqrt{9} = 3 \).
The minimum value of \( f(x) \) is at the boundaries \( x = \pm 3 \), where \( f(x) = \sqrt{0} = 0 \).
\[
\Rightarrow \text{Range of } f(x) = [0, 3]
\]