We are given:
\[
f(x) = \cos^{-1} \left( \frac{3}{\sqrt{9x^2 - 12x + 22}} \right)
\]
Let us first simplify the expression under the square root.
\[
9x^2 - 12x + 22 = 9(x^2 - \frac{4}{3}x) + 22
\]
Complete the square inside the bracket:
\[
x^2 - \frac{4}{3}x = \left( x - \frac{2}{3} \right)^2 - \frac{4}{9}
\]
\[
9(x^2 - \frac{4}{3}x) = 9\left[ \left( x - \frac{2}{3} \right)^2 - \frac{4}{9} \right] = 9 \left( x - \frac{2}{3} \right)^2 - 4
\]
Now add 22:
\[
9x^2 - 12x + 22 = 9 \left( x - \frac{2}{3} \right)^2 + 18
\]
Thus,
\[
\sqrt{9x^2 - 12x + 22} = \sqrt{9 \left( x - \frac{2}{3} \right)^2 + 18}
\]
The minimum value of \( \left( x - \frac{2}{3} \right)^2 \) is 0, so the minimum value of the expression is:
\[
\sqrt{18} = 3\sqrt{2}
\]
So the maximum value of the function inside the inverse cosine is:
\[
\frac{3}{\sqrt{9x^2 - 12x + 22}} \leq \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}}
\]
And the minimum value approaches 0 (as \( \sqrt{9x^2 - 12x + 22} \to \infty \)), so the expression inside the inverse cosine lies in:
\[
\left( 0, \frac{1}{\sqrt{2}} \right]
\]
Now consider the range of \( \cos^{-1}(x) \). If \( x \in (0, \frac{1}{\sqrt{2}}] \), then:
\[
\cos^{-1}(x) \in \left[ \cos^{-1} \left( \frac{1}{\sqrt{2}} \right), \cos^{-1}(0) \right) = \left[ \frac{\pi}{4}, \frac{\pi}{2} \right)
\]