Let \( y = \frac{x^2 + x + 1}{x^2 - x + 1} \).
Cross-multiplying:
\[
y(x^2 - x + 1) = x^2 + x + 1
\Rightarrow yx^2 - yx + y = x^2 + x + 1.
\]
Rewriting:
\[
(y - 1)x^2 - (y + 1)x + (y - 1) = 0.
\]
This is a quadratic in \( x \), for \( x \in \mathbb{R} \), discriminant \( D \geq 0 \):
\[
D = (y + 1)^2 - 4(y - 1)^2 \geq 0.
\]
Simplify:
\[
D = y^2 + 2y + 1 - 4(y^2 - 2y + 1) = -3y^2 + 10y - 3 \geq 0.
\]
Solve the inequality:
\[
-3y^2 + 10y - 3 \geq 0 \Rightarrow y \in \left[\frac{1}{3}, 3\right].
\]