The radius of the oblate spheroid at a latitude \( \phi \) is given by the formula:
\[
r = \sqrt{\left( 1 - e^2 \right)} \cdot a
\]
where:
- \( a \) is the equatorial radius,
- \( e \) is the eccentricity, and
- \( \phi \) is the latitude.
For the given problem:
- The ellipticity is \( 1/298.25 \), so the eccentricity \( e = \sqrt{1 - \frac{1}{298.25}} \),
- The equatorial radius \( a = 6378140 \, \text{m} \).
Calculating \( e \) and \( r \):
\[
e = \sqrt{1 - \frac{1}{298.25}} = 0.0033528
\]
Now, calculate the radius at 45° latitude:
\[
r = \sqrt{(1 - 0.0033528^2)} \times 6378140 = 6367.44 \, \text{km}
\]