The radius \( r \) of a nucleus is given by the empirical formula:
\[
r = r_0 A^{1/3}
\]
where \( r_0 \) is a constant with a value approximately \( 1.2 \times 10^{-15} \) m, and \( A \) is the mass number of the nucleus.
For \( A = 125 \), the radius is:
\[
r = 1.2 \times 10^{-15} \times (125)^{1/3}
\]
First, compute \( (125)^{1/3} \):
\[
% Option
(125)^{1/3} \approx 5
\]
Therefore,
\[
r \approx 1.2 \times 10^{-15} \times 5 = 6 \times 10^{-15} \, \text{m}
\]
Thus, the radius of the nucleus is \( 6 \times 10^{-15} \) m.
Therefore, the correct answer is option (2), \( 6 \times 10^{-15} \, \text{m} \).