The lateral surface area of a cone is given by: \[ A = \pi r \ell \] where \( r \) is the radius and \( \ell \) is the slant height of the cone. Using the Pythagorean theorem: \[ \ell = \sqrt{r^2 + h^2} \] where \( h \) is the height. Now, differentiate with respect to time \( t \): \[ \frac{dA}{dt} = \pi \left( r \frac{d\ell}{dt} + \ell \frac{dr}{dt} \right) \] Substitute the given values of \( r = 7 \), \( h = 24 \), \( \frac{dr}{dt} = 3 \), and \( \frac{dh}{dt} = -4 \), then calculate \( \frac{dA}{dt} \). Thus, the rate of change of the lateral surface is \( 54 \pi \, \text{cm}^2/\text{min} \).
If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + ... \infty = \frac{\pi^4}{90}, $ $ \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + ... \infty = \alpha, $ $ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + ... \infty = \beta, $ then $ \frac{\alpha}{\beta} $ is equal to:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to