The lateral surface area of a cone is given by: \[ A = \pi r \ell \] where \( r \) is the radius and \( \ell \) is the slant height of the cone. Using the Pythagorean theorem: \[ \ell = \sqrt{r^2 + h^2} \] where \( h \) is the height. Now, differentiate with respect to time \( t \): \[ \frac{dA}{dt} = \pi \left( r \frac{d\ell}{dt} + \ell \frac{dr}{dt} \right) \] Substitute the given values of \( r = 7 \), \( h = 24 \), \( \frac{dr}{dt} = 3 \), and \( \frac{dh}{dt} = -4 \), then calculate \( \frac{dA}{dt} \). Thus, the rate of change of the lateral surface is \( 54 \pi \, \text{cm}^2/\text{min} \).
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to