Step 1: Since \(\angle ABC=90^\circ\), the circumcenter of \(\triangle ABC\) is the midpoint \(M\) of the hypotenuse \(AC\). Hence
\[
AM=CM=\frac{AC}{2}, \qquad BM=\frac{AC}{2}.
\]
Given \(AB=6\), \(BC=2\) (legs), so
\[
AC=\sqrt{AB^{2}+BC^{2}}=\sqrt{6^{2}+2^{2}}=\sqrt{40}=2\sqrt{10},
\]
and therefore \(BM=\frac{AC}{2}=\sqrt{10}.
\]
Step 2: Let the radius of the given circle be \(R=\sqrt{50}\). For the chord \(AC\) of length \(\sqrt{40}\), the perpendicular distance from \(O\) to the chord is
\[
OM=\sqrt{R^{2}-\left(\frac{AC}{2}\right)^{2}}=\sqrt{50-10}=\sqrt{40}=2\sqrt{10}.
\]
Step 3: Place \(M\) at the origin with \(AC\) on the \(x\)-axis. Then \(B\) lies on the circle \(MB=\sqrt{10}\) and \(O\) lies on the line perpendicular to \(AC\) through \(M\) with \(OM=2\sqrt{10}\). Since \(B\) is inside the big circle, \(B\) and \(O\) must be on the same side of \(AC\). Hence
\[
OB^{2}=OM^{2}+MB^{2}-2\cdot OM\cdot MB\cdot \cos 0^\circ
= (2\sqrt{10})^{2}+(\sqrt{10})^{2}-2(2\sqrt{10})(\sqrt{10})
=40+10-40=26.
\]
Thus, \(\boxed{OB^{2}=26}\).