First, convert the rotational speed from revolutions per minute (RPM) to radians per second:
\[
\omega = \text{RPM} \times \frac{2\pi}{60}
\]
\[
\omega = 850 \times \frac{2 \times 3.14}{60} = 89.04 \ \text{radians/second}
\]
Now, calculate the centrifugal force:
\[
F_c = m \cdot \omega^2 \cdot r
\]
Where:
- \( m = 1 \) kg (since we are comparing to gravity force)
- \( \omega = 89.04\ \text{radians/s} \)
- \( r = 0.1 \ \text{m} \)
\[
F_c = 1 \times (89.04)^2 \times 0.1 = 1 \times 7923.39 \times 0.1 = 792.34~\text{N}
\]
To express this in terms of g-force:
\[
\text{g-force} = \frac{F_c}{m \cdot g} = \frac{792.34}{9.81} = 80.8~\text{g-force}
\]
Thus, the centrifugal force in terms of g-force is:
\[
\boxed{81.0~\text{g-force}}
\]