Finding the R.M.S. Value of the Current
1: Formula for r.m.s. Value
The r.m.s. (root mean square) value of a current \( i(t) \) is given by:
\[
i_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T i^2(t) \, dt}
\]
where \( T \) is the period of the oscillation.
2: Squaring the Current Expression
Given that:
\[
i = i_1 \cos \omega t + i_2 \sin \omega t
\]
The square of the current is:
\[
i^2 = (i_1 \cos \omega t + i_2 \sin \omega t)^2 = i_1^2 \cos^2 \omega t + i_2^2 \sin^2 \omega t + 2 i_1 i_2 \cos \omega t \sin \omega t
\]
3: Averaging Over One Period
The average values of \( \cos^2 \omega t \) and \( \sin^2 \omega t \) over a period \( T \) are \( \frac{1}{2} \), and the average of \( \cos \omega t \sin \omega t \) is zero. Thus:
\[
\langle i^2 \rangle = \frac{1}{2} i_1^2 + \frac{1}{2} i_2^2
\]
4: Calculating the r.m.s. Value
Now, the r.m.s. value of the current is:
\[
i_{\text{rms}} = \sqrt{\frac{1}{2} i_1^2 + \frac{1}{2} i_2^2} = \frac{1}{\sqrt{2}} \sqrt{i_1^2 + i_2^2}
\]
Thus, the correct answer is:
\[
\boxed{(C) \, \frac{1}{\sqrt{2}} \sqrt{i_1^2 + i_2^2}}
\]