Question:

The product of all values of $(\cos \alpha + i \sin \alpha)^{3/5}$ is equal to

Updated On: Jun 23, 2023
  • 1
  • $\cos \alpha + i \sin \alpha $
  • $\cos 3 \alpha + i \sin 3 \alpha $
  • $\cos 5 \alpha + i \sin 5 \alpha $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

$\left(\cos\alpha +i \sin\alpha\right)^{\frac{3}{5}} = \left(\cos3\alpha+ i \sin3\alpha\right)^{\frac{1}{5}} $
$ =\left[\cos\left(2k\pi+3\alpha\right)+i \sin\left(2k\pi+3\alpha\right)\right]^{\frac{1}{5}} $
$ = \left[\cos\left(\frac{2k\pi+3\alpha}{5}\right) + i \sin\left(\frac{2k\pi+3\alpha}{5}\right)\right] ,$
where k = 0, 1,2,3,4
Product of all values.
$ =\left(\cos \frac{3\alpha}{5} + i \sin \frac{3\alpha}{5}\right). \left(\cos\left(\frac{2\pi+3\alpha}{5}\right) +i \sin\left(\frac{2\pi+3\alpha}{5}\right)\right) . \left(\cos \frac{4\pi+3\alpha}{5}+ i \sin \frac{4\pi+3\alpha}{5}\right) . \left(\cos \frac{6\pi+3\alpha}{5} +i\sin \frac{6\pi+3\alpha}{5}\right) . \left(\cos\left(\frac{8\pi+3\alpha}{5}\right) +i \sin\left(\frac{8\pi +3\alpha}{5}\right)\right)$
$ =\cos\left[\frac{3\alpha}{5} + \frac{2\pi+3\alpha}{5} + \frac{4\pi+3\alpha}{5} + \frac{6\pi+3\alpha}{5} + \frac{8\pi+3\alpha}{5}\right]+i \sin\left[\frac{3\alpha}{5} +\frac{2\pi+3\alpha}{5} + \frac{4\pi+3\alpha}{5} + \frac{6\pi+3\alpha}{5} + \frac{8\pi+3\alpha}{5}\right] $
$= \cos\left[\frac{5}{2} \left(2. \frac{3\alpha}{5} + \left(5-1\right). \left(\frac{2\pi}{5}\right)\right) \right] +i \sin\left[\frac{5}{2} \left(2. \frac{3\alpha}{5} +\left(5-1\right)..\left(\frac{2\pi}{5}\right)\right)\right] $
$=\cos\left[\frac{5}{2} . \left(\frac{6\alpha}{5} + \left(\frac{8\pi}{5}\right)\right)\right] + i \sin\left[\frac{5}{2} \left(\frac{6\alpha}{5} + \frac{8\pi}{5}\right)\right] $
$= \cos (3\alpha + 4 \pi) + i \sin(3 \alpha + 4\pi)$
$= \cos (4\pi + 3\alpha ) + i \sin (4\pi + 3\alpha )$
$ = \cos 3 \alpha + i \sin 3 \alpha $
Was this answer helpful?
0
0

Concepts Used:

Quadratic Equations

A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers

Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.

The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)

Two important points to keep in mind are:

  • A polynomial equation has at least one root.
  • A polynomial equation of degree ‘n’ has ‘n’ roots.

Read More: Nature of Roots of Quadratic Equation

There are basically four methods of solving quadratic equations. They are:

  1. Factoring
  2. Completing the square
  3. Using Quadratic Formula
  4. Taking the square root