Step 1: Recall the Economic Order Quantity (EOQ) formula.
The Economic Order Quantity (EOQ) formula is given by:
\[
EOQ = \sqrt{\frac{2DS}{H}}
\]
Where:
\(D\) = Annual Demand
\(S\) = Ordering Cost per order
\(H\) = Holding Cost per unit per year
Step 2: Calculate EOQ for Product 'A'.
For Product 'A':
Demand (\(D_A\)) = 1000 units/year
Ordering Cost (\(S_A\)) = Rs 100/- per order
Holding Cost (\(H_A\)) = Rs 40/- per year
\[
EOQ_A = \sqrt{\frac{2 \times 1000 \times 100}{40}}
\]
\[
EOQ_A = \sqrt{\frac{200000}{40}}
\]
\[
EOQ_A = \sqrt{5000}
\]
Step 3: Calculate EOQ for Product 'B'.
For Product 'B':
Demand (\(D_B\)) = 3600 units/year
Ordering Cost (\(S_B\)) = Rs 100/- per order
Holding Cost (\(H_B\)) = Rs 100/- per year
\[
EOQ_B = \sqrt{\frac{2 \times 3600 \times 100}{100}}
\]
\[
EOQ_B = \sqrt{2 \times 3600}
\]
\[
EOQ_B = \sqrt{7200}
\]
Step 4: Calculate the ratio of EOQs 'B' to 'A'.
Ratio = \( \frac{EOQ_B}{EOQ_A} \)
\[
\text{Ratio} = \frac{\sqrt{7200}}{\sqrt{5000}} = \sqrt{\frac{7200}{5000}} = \sqrt{\frac{72}{50}} = \sqrt{\frac{36}{25}}
\]
\[
\text{Ratio} = \frac{\sqrt{36}}{\sqrt{25}} = \frac{6}{5} = 1.2
\]
Step 5: Compare with options.
The calculated ratio is 1.2, which matches option (2).
The final answer is \( \boxed{\text{2}} \).