Step 1: Write the given equation:
The total probability is given as: \[ P(0) + P(1) + P(2) + P(3) + P(4) = 1 \] Substituting the known values: \[ 0.1 + k + 2k + k + 0.1 = 1 \] where \( P(1) = k \), \( P(2) = 2k \), and \( P(3) = k \).
Step 2: Simplify the equation:
Combine the terms: \[ 0.2 + 4k = 1 \] Subtract \( 0.2 \) from both sides: \[ 4k = 0.8 \] Divide by \( 4 \) to find \( k \): \[ k = 0.2 = \frac{1}{5} \]
Step 3: Find \( P(2) \): Given \( P(2) = 2k \), substitute the value of \( k \): \[ P(2) = 2 \times \frac{1}{5} = \frac{2}{5} \]
Conclusion: The value of \( P(2) \) is \( \mathbf{\frac{2}{5}} \).
ASSERTION-REASON BASED QUESTIONS:-
Questions number 19 and 20 are Assertion and Reason based questions.
Two statements are given, one labelled Assertion (A) and the other labelled Reason (R).
Select the correct answer from the codes (A), (B), (C) and (D) as given below.
A store has been selling calculators at Rs. 350 each. A market survey indicates that a reduction in price (\( p \)) of calculators increases the number of units (\( x \)) sold. The relation between the price and quantity sold is given by the demand function:
\[ p = 450 - \frac{x}{2}. \]
Based on the above information, answer the following questions:
Rohit, Jaspreet, and Alia appeared for an interview for three vacancies in the same post. The probability of Rohit's selection is \( \frac{1}{5} \), Jaspreet's selection is \( \frac{1}{3} \), and Alia's selection is \( \frac{1}{4} \). The events of selection are independent of each other.
Based on the above information, answer the following questions:
An instructor at the astronomical centre shows three among the brightest stars in a particular constellation. Assume that the telescope is located at \( O(0,0,0) \) and the three stars have their locations at points \( D, A, \) and \( V \), having position vectors: \[ 2\hat{i} + 3\hat{j} + 4\hat{k}, \quad 7\hat{i} + 5\hat{j} + 8\hat{k}, \quad -3\hat{i} + 7\hat{j} + 11\hat{k} \] respectively. Based on the above information, answer the following questions: