The principal value of \(\sin^{-1}\left\{\sin\left(\frac{5\pi}{6}\right)\right\}\) is
Show Hint
Even if \(\sin\theta\) is computed from an angle outside \(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\), \(\sin^{-1}\) always returns the principal value within this range.
Step 1: Compute \(\sin\left(\frac{5\pi}{6}\right)\).
\[
\sin\left(\frac{5\pi}{6}\right)=\sin\left(\pi-\frac{\pi}{6}\right)=\sin\left(\frac{\pi}{6}\right)=\frac{1}{2}
\]
Step 2: Apply principal value range of \(\sin^{-1}\).
Principal value of \(\sin^{-1}(x)\) lies in:
\[
\left[-\frac{\pi}{2},\frac{\pi}{2}\right]
\]
Step 3: Find \(\sin^{-1}\left(\frac{1}{2}\right)\).
\[
\sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
\]
Final Answer:
\[
\boxed{\frac{\pi}{6}}
\]