Question:

The principal value of \(\sin^{-1}\left\{\sin\left(\frac{5\pi}{6}\right)\right\}\) is

Show Hint

Even if \(\sin\theta\) is computed from an angle outside \(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\), \(\sin^{-1}\) always returns the principal value within this range.
Updated On: Jan 3, 2026
  • \(\frac{\pi}{6}\)
  • \(\frac{5\pi}{6}\)
  • \(\frac{7\pi}{6}\)
  • None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Compute \(\sin\left(\frac{5\pi}{6}\right)\).
\[ \sin\left(\frac{5\pi}{6}\right)=\sin\left(\pi-\frac{\pi}{6}\right)=\sin\left(\frac{\pi}{6}\right)=\frac{1}{2} \] Step 2: Apply principal value range of \(\sin^{-1}\).
Principal value of \(\sin^{-1}(x)\) lies in:
\[ \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \] Step 3: Find \(\sin^{-1}\left(\frac{1}{2}\right)\).
\[ \sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \] Final Answer: \[ \boxed{\frac{\pi}{6}} \]
Was this answer helpful?
0
0