Step 1: Lens maker formula for power in medium.
Power of lens in medium:
\[
P = \left(\frac{n_g}{n_m} - 1\right)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)
\]
Step 2: Power in air.
In air, \(n_m = 1\):
\[
P_{air} = (n_g - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)
\]
Given \(P_{air}=5D\), \(n_g=1.5\):
\[
5 = (1.5-1)K
\Rightarrow 5 = 0.5K
\Rightarrow K = 10
\]
where \(K=\left(\frac{1}{R_1}-\frac{1}{R_2}\right)\).
Step 3: Power in liquid (concave).
Focal length becomes \(f = -100\,cm = -1\,m\).
So power:
\[
P_{liq} = -1\,D
\]
\[
-1 = \left(\frac{1.5}{n_l}-1\right)10
\Rightarrow \frac{1.5}{n_l}-1 = -\frac{1}{10}
\Rightarrow \frac{1.5}{n_l} = \frac{9}{10}
\Rightarrow n_l = \frac{1.5\times 10}{9} = \frac{15}{9}=\frac{5}{3}
\]
Final Answer:
\[
\boxed{\dfrac{5}{3}}
\]