Concept:
For a thin lens, the focal length depends on the refractive index of the lens material
{relative to the surrounding medium}.
The lens maker’s formula in a medium is:
\[
\frac{1}{f_m}=\left(\frac{\mu_{\text{lens}}}{\mu_{\text{medium}}}-1\right)
\left(\frac{1}{R_1}-\frac{1}{R_2}\right)
\]
Step 1: Focal length of the lens in air
In air, \( \mu_{\text{medium}}=1 \):
\[
\frac{1}{f_{\text{air}}}=(\mu-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)
\]
Given:
\[
f_{\text{air}}=18\text{ cm},\quad \mu=1.5
\]
\[
\Rightarrow \left(\frac{1}{R_1}-\frac{1}{R_2}\right)
=\frac{1}{18(1.5-1)}=\frac{1}{9}
\]
Step 2: Focal length of the lens in water
Relative refractive index:
\[
\mu_{\text{rel}}=\frac{\mu_{\text{lens}}}{\mu_{\text{water}}}
=\frac{1.5}{4/3}=\frac{9}{8}
\]
\[
\frac{1}{f_{\text{water}}}
=\left(\frac{9}{8}-1\right)\frac{1}{9}
=\frac{1}{8}\cdot\frac{1}{9}
=\frac{1}{72}
\]
\[
\Rightarrow f_{\text{water}}=72\text{ cm}
\]
Step 3: Difference in focal lengths
\[
\Delta f=f_{\text{water}}-f_{\text{air}}=72-18=54\text{ cm}
\]
Step 4: Express in the form \( \alpha f \)
\[
\alpha=\frac{54}{18}=3
\]
Final Answer:
\[
\boxed{\alpha=3}
\]