We are given the potential difference \( V = (50 \pm 3) \) V and the current \( I = (5 \pm 0.1) \) A. We need to find the percentage error in the resistance \( R \).
Step 1: Determine the resistance and its uncertainty.
The resistance \( R \) is given by Ohm’s Law:
\[
R = \frac{V}{I}
\]
Nominal values: \( V = 50 \) V, \( I = 5 \) A. So:
\[
R = \frac{50}{5} = 10 \, \Omega
\]
Step 2: Calculate the relative errors in \( V \) and \( I \).
Relative error in \( V \):
\[
\frac{\Delta V}{V} = \frac{3}{50} = 0.06
\]
Relative error in \( I \):
\[
\frac{\Delta I}{I} = \frac{0.1}{5} = 0.02
\]
Step 3: Determine the relative error in resistance \( R \).
Since \( R = \frac{V}{I} \), the relative error in \( R \) is:
\[
\frac{\Delta R}{R} = \frac{\Delta V}{V} + \frac{\Delta I}{I} = 0.06 + 0.02 = 0.08
\]
Step 4: Calculate the percentage error in \( R \).
The percentage error is:
\[
\text{Percentage error} = \frac{\Delta R}{R} \times 100 = 0.08 \times 100 = 8%
\]
Final Answer:
\[
\boxed{8}
\]