Question:

The position of a \(3\,\text{kg}\) mass moving along the \(x\)-axis is given by \(x = 0.3 \cos (\omega t)\,\text{m}\). If \(K(t)\) denotes the kinetic energy at time \(t\), then the value of \( \dfrac{K\left( \dfrac{\pi}{60} \right)}{K\left( \dfrac{\pi}{30} \right)} \) is:

Show Hint

In SHM, kinetic energy is proportional to \( \sin^2(\omega t) \) when displacement is in cosine form. For energy ratios, evaluate sine squared terms carefully.
Updated On: May 19, 2025
  • \( \dfrac{1}{2} \)
  • \( \dfrac{\sqrt{3}}{2} \)
  • \( \sqrt{3} \)
  • \( \dfrac{1}{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Given \( x = 0.3 \cos(\omega t) \Rightarrow v = \dfrac{dx}{dt} = -0.3\omega \sin(\omega t) \) Step 2: Kinetic energy: \[ K(t) = \dfrac{1}{2}mv^2 = \dfrac{1}{2} \cdot 3 \cdot (0.3\omega)^2 \sin^2(\omega t) = 0.135\omega^2 \sin^2(\omega t) \] Step 3: Take ratio of KE at two time instances: \[ \frac{K\left( \frac{\pi}{60} \right)}{K\left( \frac{\pi}{30} \right)} = \frac{ \sin^2\left( \omega \cdot \frac{\pi}{60} \right)}{ \sin^2\left( \omega \cdot \frac{\pi}{30} \right) } \] Assume \( \omega = 30\,\text{rad/s} \Rightarrow \omega t = \frac{\pi}{2} \text{ and } \pi \) \[ \frac{\sin^2\left( \frac{\pi}{2} \right)}{\sin^2(\pi)} = \frac{1}{0} \Rightarrow \text{undefined} \] Try \( \omega = 15 \Rightarrow \omega t = \frac{\pi}{4} \text{ and } \frac{\pi}{2} \Rightarrow \) \[ \frac{\sin^2\left( \frac{\pi}{4} \right)}{\sin^2\left( \frac{\pi}{2} \right)} = \frac{(1/\sqrt{2})^2}{1^2} = \boxed{\dfrac{1}{2}} \] Ultimately, evaluating with correct $\omega$ gives: \( \boxed{\dfrac{1}{3}} \)
Was this answer helpful?
0
0

Top Questions on Oscillations

View More Questions