Given:
\(E(R_S)=0.08,\; \mathrm{Var}(R_S)=0.07,\; E(R_T)=0.05,\; \mathrm{Var}(R_T)=0.05,\; \mathrm{Cov}(R_S,R_T)=0.04.\)
Portfolio return: \(R = wR_S+(1-w)R_T\). We want the value of \(w\) that minimizes \(\mathrm{Var}(R)\).
Step 1 β Write \(\mathrm{Var}(R)\)
\[ \mathrm{Var}(R)=w^2\mathrm{Var}(R_S)+(1-w)^2\mathrm{Var}(R_T)+2w(1-w)\,\mathrm{Cov}(R_S,R_T). \] Step 2 β Differentiate w.r.t. \(w\) and set to zero
Differentiate: \[ \frac{d}{dw}\mathrm{Var}(R) =2w\mathrm{Var}(R_S)-2(1-w)\mathrm{Var}(R_T)+2(1-2w)\mathrm{Cov}(R_S,R_T). \] Set equal to zero and simplify (divide by 2): \[ w\mathrm{Var}(R_S)-(1-w)\mathrm{Var}(R_T)+(1-2w)\mathrm{Cov}(R_S,R_T)=0. \] Collect terms in \(w\): \[ w\big(\mathrm{Var}(R_S)+\mathrm{Var}(R_T)-2\mathrm{Cov}(R_S,R_T)\big) = \mathrm{Var}(R_T)-\mathrm{Cov}(R_S,R_T). \] So \[ \boxed{\,w^\ast=\dfrac{\mathrm{Var}(R_T)-\mathrm{Cov}(R_S,R_T)}{\mathrm{Var}(R_S)+\mathrm{Var}(R_T)-2\mathrm{Cov}(R_S,R_T)}\,} \] Step 3 β Substitute numbers
\[ \text{Numerator}=0.05-0.04=0.01, \qquad \text{Denominator}=0.07+0.05-2(0.04)=0.12-0.08=0.04. \] Therefore \[ w^\ast=\frac{0.01}{0.04}=0.25. \] Final answer (rounded to 2 d.p.):
\[ \boxed{w=0.25} \]
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |