Let the population at any instant (t) be y.
It is given that the rate of increase of population is proportional to the number of inhabitants at any instant.
∴ \(\frac{dy}{dt} \propto y\)
\(\Rightarrow \frac{dy}{dt}=ky\) (k is a constant)
\(\Rightarrow \frac{dy}{y}=kdt\)
Integrating both sides, we get:
log y= kt+C...(1)
In the year 1999,t=0 and y=20000.
Therefore, we get:
log 20000=C...(2)
In the year 2004,t=5 and y=25000.
Therefore, we get:
log 25000=k . 5+C
\(\Rightarrow\) log 25000=5k+log 20000
\(\Rightarrow \) 5k=log \(\bigg(\frac{25000}{20000}\bigg)=\log \bigg(\frac{5}{4}\bigg)\)
\(\Rightarrow k=\frac{1}{5}\log \bigg(\frac{5}{4}\bigg)\) ...(3)
In the year 2009,t=10years.
Now, on substituting the values of t, k, and C in equation (1),we get:
log y=10×\(\frac{1}{5}\) log\(\bigg(\frac{5}{4}\bigg)\)+log (20000)
\(\Rightarrow\) log y=log \(\bigg[20000*\bigg(\frac{5}{4}\bigg)^2\bigg]\)
\(\Rightarrow y = 20000*\frac{5}{4}*\frac{5}{4}\)
\(\Rightarrow \) y=31250
Hence, the population of the village in 2009 will be 31250.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.