Given vertices:
\( A(-5,0) \), \( B(5,0) \), and \( C(0,4) \)
Step 1: Calculate the side lengths
Using the distance formula:
\( d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)
AB:
\( AB = \sqrt{(5 - (-5))^2 + (0 - 0)^2} = \sqrt{(5+5)^2} = \sqrt{10^2} = 10 \)
BC:
\( BC = \sqrt{(0 - 5)^2 + (4 - 0)^2} = \sqrt{(-5)^2 + 4^2} = \sqrt{25 + 16} = \sqrt{41} \)
AC:
\( AC = \sqrt{(0 - (-5))^2 + (4 - 0)^2} = \sqrt{5^2 + 4^2} = \sqrt{25 + 16} = \sqrt{41} \)
Step 2: Identify the triangle type
- Since \( AC = BC \), the triangle is isosceles.
- To check if it is right-angled, we use the Pythagorean theorem:
\( AB^2 = AC^2 + BC^2 \)
\( 10^2 = (\sqrt{41})^2 + (\sqrt{41})^2 \)
\( 100 = 41 + 41 = 82 \), which is not true.
So, the triangle is isosceles but not right-angled.
Final Answer: An isosceles triangle