1. Identify the point and line:
The plane must contain the point \( (3, 2, 0) \) and the line \( \frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4} \).
2. Find two points on the line:
For \( t = 0 \): \( (3, 6, 4) \) (given).
For \( t = 1 \): \( (4, 11, 8) \).
3. Compute two vectors in the plane:
Vector from \( (3, 2, 0) \) to \( (3, 6, 4) \): \( \vec{v_1} = (0, 4, 4) \).
Vector from \( (3, 2, 0) \) to \( (4, 11, 8) \): \( \vec{v_2} = (1, 9, 8) \).
4. Find the normal vector to the plane:
Compute the cross product \( \vec{v_1} \times \vec{v_2} \):
\[ \vec{v_1} \times \vec{v_2} = (4 \cdot 8 - 4 \cdot 9, -(0 \cdot 8 - 4 \cdot 1), 0 \cdot 9 - 4 \cdot 1) = (-4, 4, -4) \]
Simplify to \( (1, -1, 1) \).
5. Write the plane equation:
Using point \( (3, 2, 0) \) and normal vector \( (1, -1, 1) \):
\[ 1(x - 3) - 1(y - 2) + 1(z - 0) = 0 \implies x - y + z = 1 \]
Correct Answer: (A) \( x - y + z = 1 \)
The given line is expressed in symmetric form:
$$ \frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4} $$
The direction vector of this line is $ \mathbf{v} = \langle 1, 5, 4 \rangle $.
$$ \frac{3 - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4} = 0 $$
This gives us the point $ Q = (3, 6, 4) $.
The normal vector to the plane is perpendicular to both $ \mathbf{PQ} $ and $ \mathbf{v} $. We can find this using the cross product:
$$ \mathbf{n} = \mathbf{PQ} \times \mathbf{v} = \langle 0, 4, 4 \rangle \times \langle 1, 5, 4 \rangle $$ $$ \mathbf{n} = \langle (4 \cdot 4 - 4 \cdot 5), (4 \cdot 1 - 0 \cdot 4), (0 \cdot 5 - 4 \cdot 1) \rangle = \langle -4, 4, -4 \rangle $$
We can simplify this normal vector by dividing by $-4$: $ \mathbf{n} = \langle 1, -1, 1 \rangle $.
The equation of a plane is given by:
$$ A(x - x_0) + B(y - y_0) + C(z - z_0) = 0 $$
Where $ (x_0, y_0, z_0) $ is a point on the plane, and $ \langle A, B, C \rangle $ is the normal vector. Using point $ P(3, 2, 0) $ and the normal vector $ \langle 1, -1, 1 \rangle $:
$$ 1(x - 3) - 1(y - 2) + 1(z - 0) = 0 $$ $$ x - 3 - y + 2 + z = 0 $$ $$ x - y + z = 1 $$
Therefore, the equation of the plane is $ x - y + z = 1 $.