The photoelectric threshold wavelength for silver is \($\lambda_{0}$\) The energy of the electron ejected from the surface of silver by an incident wavelength \(\lambda (\lambda <\lambda _0)\)
If \( \lambda \) and \( K \) are de Broglie wavelength and kinetic energy, respectively, of a particle with constant mass. The correct graphical representation for the particle will be:
A block of certain mass is placed on a rough floor. The coefficients of static and kinetic friction between the block and the floor are 0.4 and 0.25 respectively. A constant horizontal force \( F = 20 \, \text{N} \) acts on it so that the velocity of the block varies with time according to the following graph. The mass of the block is nearly (Take \( g = 10 \, \text{m/s}^2 \)): 
One of the equations that are commonly used to define the wave properties of matter is the de Broglie equation. Basically, it describes the wave nature of the electron.
Very low mass particles moving at a speed less than that of light behave like a particle and waves. De Broglie derived an expression relating to the mass of such smaller particles and their wavelength.
Plank’s quantum theory relates the energy of an electromagnetic wave to its wavelength or frequency.
E = hν …….(1)
E = mc2……..(2)
As the smaller particle exhibits dual nature, and energy being the same, de Broglie equated both these relations for the particle moving with velocity ‘v’ as,

This equation relating the momentum of a particle with its wavelength is de Broglie equation and the wavelength calculated using this relation is the de Broglie wavelength.