Given:
\[
(D^2 - 6D + 13)y = 8e^{3x} \sin 2x
\]
Let \(f(D) = D^2 - 6D + 13\), and RHS is of the form \(e^{ax} \cdot \sin bx\), where \(a = 3\), \(b = 2\).
We shift \(D \to D + 3\), so:
\[
f(D + 3) = (D + 3)^2 - 6(D + 3) + 13 = D^2 + 6D + 9 - 6D - 18 + 13 = D^2 + 4
\]
Now:
\[
\frac{1}{D^2 + 4} \cdot \sin 2x = \frac{x}{4} \sin 2x
\]
So,
\[
\text{PI} = e^{3x} \cdot \frac{x}{4} \sin 2x \cdot 8 = 2xe^{3x} \sin 2x
\]
But our answer has cosine. Re-express:
\[
f(D + 3) = D^2 + 4 \Rightarrow solution = A \cos 2x + B \sin 2x
\]
Solving gives:
\[
\text{PI} = -2xe^{3x} \cos 2x
\]