Given \( x = \frac{t^3}{t^2 - 1},\ y = \frac{t}{t^2 - 1} \), compute \( x - 3y = \frac{t^3 - 3t}{t^2 - 1} \).
Then, using \( dx = \frac{d}{dt} \left( \frac{t^3}{t^2 - 1} \right) dt \), substitute and simplify:
The expression reduces nicely and becomes an integral of the form:
\[
\int \frac{dx}{x - 3y} = \frac{1}{2} \log (t^2 - 1) + C
\]