Step 1: Fourier's law of heat conduction.
The rate of heat transfer through a slab is given by:
\[
Q = -k A \frac{\Delta T}{L},
\]
where:
- \( Q \) is the rate of heat transfer (\( \text{W} \)),
- \( k \) is the thermal conductivity of the slab (\( \text{W} \, \text{m}^{-1} \, ^\circ\text{C}^{-1} \)),
- \( A \) is the area of the slab (\( \text{m}^2 \)),
- \( \Delta T \) is the temperature difference between the faces (\( ^\circ\text{C} \)),
- \( L \) is the thickness of the slab (\( \text{m} \)).
Step 2: Substitute the given values.
Given:
\[
k = 400 \, \text{W} \, \text{m}^{-1} \, ^\circ\text{C}^{-1}, \quad A = 0.02 \, \text{m}^2, \quad \Delta T = 500 - 200 = 300 \, ^\circ\text{C}, \quad L = 5 \, \text{cm} = 0.05 \, \text{m}.
\]
Substitute into the equation:
\[
Q = -400 \cdot 0.02 \cdot \frac{300}{0.05}.
\]
Step 3: Simplify the expression.
\[
Q = -400 \cdot 0.02 \cdot 6000 = 48,000 \, \text{W}.
\]
Step 4: Convert to kilowatts.
\[
Q = 48,000 \, \text{W} = 48 \, \text{kW}.
\]
Step 5: Conclusion.
The magnitude of the heat transfer rate is \( 48 \, \text{kW} \).