Step 1: Write general term.
In expansion of \((3-5x)^{11}\), general term is:
\[
T_{r+1} = \binom{11}{r}(3)^{11-r}(-5x)^r
\]
Step 2: Substitute \(x=\dfrac{1}{5}\).
\[
-5x = -5\left(\frac{1}{5}\right) = -1
\]
So term becomes:
\[
T_{r+1} = \binom{11}{r}3^{11-r}(-1)^r
\]
Numerical value is:
\[
|T_{r+1}| = \binom{11}{r}3^{11-r}
\]
Step 3: Find greatest term using ratio.
\[
\frac{|T_{r+2}|}{|T_{r+1}|}
=
\frac{\binom{11}{r+1}3^{10-r}}{\binom{11}{r}3^{11-r}}
=
\frac{11-r}{r+1}\cdot \frac{1}{3}
\]
We need greatest term where ratio just becomes less than 1.
\[
\frac{11-r}{r+1}\cdot \frac{1}{3} \le 1
\Rightarrow 11-r \le 3(r+1)
\Rightarrow 11-r \le 3r+3
\Rightarrow 8 \le 4r
\Rightarrow r \ge 2
\]
Check for \(r=1\):
\[
\frac{11-1}{2}\cdot\frac{1}{3} = \frac{10}{6}>1
\]
So terms increasing till \(r=2\).
Thus greatest term is at \(r=2\), i.e. \(T_{3}\).
Step 4: Compute \(T_3\).
\[
T_3 = \binom{11}{2}3^{9}(-1)^2
= 55\cdot 3^9
\]
Final Answer:
\[
\boxed{55\times 3^9}
\]