Since \( a, b, c, d \) are in a geometric progression (G.P.) with common ratio \( r \), we express them as:
\[
b = ar, \quad c = ar^2, \quad d = ar^3
\]
The given terms:
\[
\frac{1}{a^3 + b^3}, \quad \frac{1}{b^3 + c^3}, \quad \frac{1}{c^3 + d^3}
\]
must also form a G.P.. Substituting the values in terms of \( a \):
\[
\frac{1}{a^3 + a^3r^3}, \quad \frac{1}{a^3r^3 + a^3r^6}, \quad \frac{1}{a^3r^6 + a^3r^9}
\]
Factorizing:
\[
\frac{1}{a^3(1 + r^3)}, \quad \frac{1}{a^3r^3(1 + r^3)}, \quad \frac{1}{a^3r^6(1 + r^3)}
\]
Since the terms form a G.P., the common ratio between consecutive terms is:
\[
\frac{\frac{1}{a^3r^3(1 + r^3)}}{\frac{1}{a^3(1 + r^3)}} = \frac{\frac{1}{a^3r^6(1 + r^3)}}{\frac{1}{a^3r^3(1 + r^3)}}
\]
which simplifies to \( \frac{1}{r^3} \).