The number of vacancies in a BCC iron crystal can be calculated using the formula:
\[n = \frac{\text{density} \times N_A}{\text{atomic weight} \times a^3 \times 2}\]
where \(N_A\) is Avogadro's number, the density is given, and \(a\) is the lattice parameter.
Substituting the values:
\[n = \frac{7.87 \times 6.022 \times 10^{23}}{55.85 \times (2.866 \times 10^{-8})^3 \times 2} \approx 1.23 \times 10^2 \, \text{vacancies/cm}^3\]
Match Fibre with Application.\[\begin{array}{|l|l|} \hline \textbf{LIST I} & \textbf{LIST II} \\ \textbf{Fibre} & \textbf{Application} \\ \hline \hline \text{A. Silk fibre} & \text{I. Fire retardant} \\ \hline \text{B. Wool fibre} & \text{II. Directional lustre} \\ \hline \text{C. Nomex fibre} & \text{III. Bulletproof} \\ \hline \text{D. Kevlar fibre} & \text{IV. Thermal insulation} \\ \hline \end{array}\]