The complex \([ \text{Co(H}_2\text{O)}_6 ]^{3+}\) consists of a \(\text{Co}^{3+}\) ion, which has a \(d^6\) electronic configuration. In an octahedral field created by the water ligands, the splitting of the \(d\)-orbitals leads to the \(t_{2g}\) and \(e_g\) orbitals. As cobalt in this state is in a low-spin configuration (due to the relatively strong ligand field of water), all six electrons pair up in the \(t_{2g}\) set, resulting in no unpaired electrons.
\[ \text{at } (0,0) \, t_{2g}: \quad (0,-0.3); \, (1.2,-0.3); \, (0.2,-0.3) \text{ circle (0.05); } \, (0.6,-0.3) \text{ circle (0.05); } \, (1.0,-0.3) \text{ circle (0.05);} \] \[ \text{at } (2,0) \, e_g: \quad (2.2,-0.3); \, (3.2,-0.3); \, (2.2,-0.3) \text{ circle (0.05); } \, (2.6,-0.3) \text{ circle (0.05);} \]
Thus, there are no unpaired electrons in \([ \text{Co(H}_2\text{O)}_6 ]^{3+}\).
Given below are two statements regarding conformations of n-butane. Choose the correct option. 
Consider a weak base \(B\) of \(pK_b = 5.699\). \(x\) mL of \(0.02\) M HCl and \(y\) mL of \(0.02\) M weak base \(B\) are mixed to make \(100\) mL of a buffer of pH \(=9\) at \(25^\circ\text{C}\). The values of \(x\) and \(y\) respectively are
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
