Step 1: Assume the initial numbers of students.
Let the number of students in the three classes initially be
\[
3x,\; 13x,\; 6x.
\]
Step 2: Add 18 students to each class.
After adding 18 students to each class, the numbers become
\[
3x+18,\; 13x+18,\; 6x+18.
\]
Step 3: Use the new ratio.
According to the question,
\[
\frac{3x+18}{15} = \frac{13x+18}{35} = \frac{6x+18}{21}.
\]
Step 4: Solve using the first two terms.
\[
\frac{3x+18}{15} = \frac{13x+18}{35}
\]
\[
35(3x+18) = 15(13x+18)
\]
\[
105x + 630 = 195x + 270
\]
\[
360 = 90x $\Rightarrow$ x = 4.
\]
Step 5: Find the total number of students initially.
\[
3x + 13x + 6x = 22x = 22 \times 4 = 88.
\]
% Final Answer
Final Answer: \[ \boxed{88} \]
A shopkeeper marks his goods 40% above cost price and offers a discount of 20%. What is his overall profit percentage?
Health insurance plays a vital role in ensuring financial protection and access to quality healthcare. In India, however, the extent and nature of health insurance coverage vary significantly between urban and rural areas. While urban populations often have better access to organized insurance schemes, employer-provided coverage, and awareness about health policies, rural populations face challenges such as limited outreach of insurance schemes, inadequate infrastructure, and lower awareness levels. This urban-rural divide in health insurance coverage highlights the broader issue of healthcare inequality, making it essential to analyze the factors contributing to this gap and explore strategies for more inclusive health protection. A state-level health survey was conducted.
The survey covered 1,80,000 adults across urban and rural areas. Urban residents formed 55% of the sample (that is, 99,000 people) while rural residents made up 45% (that is, 81,000 people). In each area, coverage was classified under four heads – Public schemes, Private insurance, Employer-provided coverage, and Uninsured. In urban areas, Public coverage accounted for 28% of the urban population, Private for 22%, Employer for 18%, and the remaining 32% were Uninsured. In rural areas, where formal coverage is generally lower, Public coverage stood at 35%, Private at 10%, Employer at 8%, while 47% were Uninsured.
For this survey, “Insured” includes everyone covered by Public + Private + Employer schemes, and “Uninsured” indicates those with no coverage at all. Officials noted that public schemes remain the backbone of rural coverage, while employer and private plans are relatively more prevalent in urban centres. (250 words)
Potato slices weighing 50 kg is dried from 60% moisture content (wet basis) to 5% moisture content (dry basis). The amount of dried potato slices obtained (in kg) is ............ (Answer in integer)
Two Carnot heat engines (E1 and E2) are operating in series as shown in the figure. Engine E1 receives heat from a reservoir at \(T_H = 1600 \, {K}\) and does work \(W_1\). Engine E2 receives heat from an intermediate reservoir at \(T\), does work \(W_2\), and rejects heat to a reservoir at \(T_L = 400 \, {K}\). Both the engines have identical thermal efficiencies. The temperature \(T\) (in K) of the intermediate reservoir is ........ (answer in integer). 
A bar of length \( L = 1 \, {m} \) is fixed at one end. Before heating its free end has a gap of \( \delta = 0.1 \, {mm} \) from a rigid wall as shown in the figure. Now the bar is heated resulting in a uniform temperature rise of \( 10^\circ {C} \). The coefficient of linear thermal expansion of the material is \( 20 \times 10^{-6} / \degree C \) and the Young’s modulus of elasticity is 100 GPa. Assume that the material properties do not change with temperature.
The magnitude of the resulting axial stress on the bar is .......... MPa (in integer). 
A massless cantilever beam, with a tip mass \( m \) of 10 kg, is modeled as an equivalent spring-mass system as shown in the figure. The beam is of length \( L = 1 \, {m} \), with a circular cross-section of diameter \( d = 20 \, {mm} \). The Young’s modulus of the beam material is 200 GPa.
The natural frequency of the spring-mass system is ............ Hz (rounded off to two decimal places).
A simply-supported beam has a circular cross-section with a diameter of 20 mm, area of 314.2 mm\(^2\), area moment of inertia of 7854 mm\(^4\), and a length \( L \) of 4 m. A point load \( P = 100 \, {N} \) acts at the center and an axial load \( Q = 20 \, {kN} \) acts through the centroidal axis as shown in the figure.
The magnitude of the offset between the neutral axis and the centroidal axis, at \( L/2 \) from the left, is ............ mm (rounded off to one decimal place).