Step 1: Parametric point on parabola.
For \(y^2=4x\), parametric form is:
\[
(x,y)=(t^2,2t)
\] Step 2: Slope of tangent and normal.
Differentiate:
\[
2y\frac{dy}{dx}=4 \Rightarrow \frac{dy}{dx}=\frac{2}{y}
\]
At point \((t^2,2t)\):
\[
\frac{dy}{dx}=\frac{2}{2t}=\frac{1}{t}
\]
So slope of normal:
\[
m_n=-t
\] Step 3: Equation of normal at parameter \(t\).
Normal passing through \((t^2,2t)\):
\[
y-2t=-t(x-t^2)
\] Step 4: Impose condition that it passes through \((1,0)\).
Put \(x=1,y=0\):
\[
0-2t=-t(1-t^2)
\]
\[
-2t=-t+t^3
\]
\[
t^3+t=0
\Rightarrow t(t^2+1)=0
\] Step 5: Count real solutions.
\[
t=0 \;\text{(real)}
\]
\[
t^2+1=0 \Rightarrow t=\pm i\;\text{(imaginary)}
\]
Only one real value of \(t\). Final Answer:
\[
\boxed{1}
\]