To solve the problem, we need to determine what the number of molecules that react with each other in an elementary reaction measures.
1. Understanding Elementary Reactions:
An elementary reaction is a single-step chemical reaction where molecules collide and react directly to form products. The number of molecules that come together in this step defines a specific characteristic of the reaction.
2. Identifying the Term:
The number of molecules that react in an elementary reaction is referred to as the molecularity of the reaction. Molecularity indicates whether the reaction is unimolecular (one molecule), bimolecular (two molecules), or termolecular (three molecules).
Final Answer:
The number of molecules that react with each other in an elementary reaction is a measure of the molecularity.
| Time (Hours) | [A] (M) |
|---|---|
| 0 | 0.40 |
| 1 | 0.20 |
| 2 | 0.10 |
| 3 | 0.05 |
Reactant ‘A’ underwent a decomposition reaction. The concentration of ‘A’ was measured periodically and recorded in the table given below:
Based on the above data, predict the order of the reaction and write the expression for the rate law.
Standard electrode potential for \( \text{Sn}^{4+}/\text{Sn}^{2+} \) couple is +0.15 V and that for the \( \text{Cr}^{3+}/\text{Cr} \) couple is -0.74 V. The two couples in their standard states are connected to make a cell. The cell potential will be:
To calculate the cell potential (\( E^\circ_{\text{cell}} \)), we use the standard electrode potentials of the given redox couples.
Given data:
\( E^\circ_{\text{Sn}^{4+}/\text{Sn}^{2+}} = +0.15V \)
\( E^\circ_{\text{Cr}^{3+}/\text{Cr}} = -0.74V \)
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find a relation between \( x \) and \( y \) such that the surface area \( S \) is minimum.
