Step 1: Forming five disulfide bonds from ten cysteines is equivalent to pairing the ten distinct residues into five unordered pairs.
Step 2: The number of pairings is \((10-1)!!=9!!=9\times7\times5\times3\times1\). Alternatively,
\[
\frac{10!}{2^5\,5!}=\frac{3628800}{32\times120}=945.
\]
Hence, the number of possible ways is \(\boxed{945}\).