\( d = \frac{Z \times M}{N_A \times a^3} \)
\( \implies M = \frac{10 \times 6.022 \times 10^{23} \times (300 \times 10^{-10})^3}{4} \)
\( M = 40.5 \, \text{gm} \)
Therefore, \( 40.5 \, \text{gm} \rightarrow 6.022 \times 10^{23} \, \text{atoms} \)
\( 4.5 \, \text{gm} \rightarrow x \)
\( x = 6.6 \times 10^{22} \, \text{atoms} \)
A cubic solid is made up of two elements $X$ and $Y$ Atoms of $X$ are present on every alternate corner and one at the enter of cube $Y$ is at $\frac{1}{3} td$ of the total faces The empirical formula of the compound is