Step 1: Convert the Given Circle Equation to Standard Form
The given circle equation is:
\[
x^2 + y^2 - 4x + 6y - 4 = 0.
\]
Rearrange the terms:
\[
(x^2 - 4x) + (y^2 + 6y) = 4.
\]
Step 2: Complete the Square
Completing the square for \( x \):
\[
(x^2 - 4x) = (x - 2)^2 - 4.
\]
Completing the square for \( y \):
\[
(y^2 + 6y) = (y + 3)^2 - 9.
\]
\[
(x - 2)^2 - 4 + (y + 3)^2 - 9 = 4.
\]
\[
(x - 2)^2 + (y + 3)^2 = 17.
\]
Thus, the equation represents a circle centered at \( (2,-3) \) with radius \( \sqrt{17} \).
Step 3: Find the Equation of the Normal at \( (1,1) \)
The normal at any point on a circle passes through the center \( (h, k) \) and the point of contact \( (x_1, y_1) \).
The slope of the normal is:
\[
m = \frac{y_1 - k}{x_1 - h} = \frac{1 - (-3)}{1 - 2} = \frac{4}{-1} = -4.
\]
The equation of the normal using the point-slope form:
\[
y - y_1 = m(x - x_1).
\]
\[
y - 1 = -4(x - 1).
\]
\[
y - 1 = -4x + 4.
\]
\[
4x + y = 5.
\]
Step 4: Conclusion
Thus, the correct answer is \( \mathbf{4x + y = 5} \).