We apply Pascal's law, which states that pressure is the same on both pistons of the hydraulic lift:
\[
\text{Pressure at } P_1 = \frac{F_1}{A_1} = \frac{m_1 g}{\pi r_1^2}, \quad
\text{Pressure at } P_2 = \frac{F_2}{A_2} = \frac{m_2 g}{\pi R^2}
\]
Given:
\[
m_1 = 2\,\text{kg}, \quad r_1 = 2\,\text{m}, \quad m_2 = 32\,\text{kg}
\]
Equating pressures:
\[
\frac{2g}{\pi \cdot 4} = \frac{32g}{\pi R^2}
\Rightarrow \frac{1}{2} = \frac{32}{R^2}
\Rightarrow R^2 = 64
\Rightarrow R = 8\,\text{m}
\]