Step 1: Using de Broglie Wavelength Formula The de Broglie wavelength is given by: \[ \lambda = \frac{h}{p} \] where:
- \( h = 6.625 \times 10^{-34} \, J \cdot s \) (Planck’s constant),
- \( p = 6.625 \times 10^{-28} \, kg \cdot ms^{-1} \) (momentum of the electron).
Step 2: Substituting the Given Values \[ \lambda = \frac{6.625 \times 10^{-34}}{6.625 \times 10^{-28}} \] \[ \lambda = 10^{-6} \, m \] Since \( 1 \, m = 10^9 \, nm \), we convert: \[ \lambda = 10^{-6} \times 10^9 = 1000 \, nm \] Thus, the correct answer is \( \mathbf{(2)} \ 1000 \).
For the circuit shown above, the equivalent gate is:
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is: