The correct answer is (C):
x 2 + (a + 3) x – (a+5) = 0
α 2 + β2 = (α + β)2 – 2 αβ = (-(a + 3))2 – 2(– (a + 5))
= a2 + 9 + 6a + 2 (a + 5)
= a2 + 8a + 19
= (a + 4)2 + 3
The minimum value is 3, at a = –4.
Define \( f(x) = \begin{cases} x^2 + bx + c, & x< 1 \\ x, & x \geq 1 \end{cases} \). If f(x) is differentiable at x=1, then b−c is equal to