The minimum deviation produced by a prism is equal to the refracting angle of prism, then choose the range of refractive index (\(\mu\)) of material of prism:
Show Hint
If the angle of minimum deviation equals the prism angle,
the refractive index simplifies to \(\mu = 2\cos\left(\frac{A}{2}\right)\),
making range-based questions straightforward.
Concept:
For a prism of refracting angle \(A\), the refractive index \(\mu\) in terms of angle of minimum deviation \(\delta_m\) is given by:
\[
\mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}
\]
Step 1: Apply the Given Condition
It is given that:
\[
\delta_m = A
\]
Substitute \(\delta_m = A\) in the formula:
\[
\mu = \frac{\sin\left(\frac{A+A}{2}\right)}{\sin\left(\frac{A}{2}\right)}
= \frac{\sin A}{\sin\left(\frac{A}{2}\right)}
\]
Step 2: Simplify the Expression
Using the identity:
\[
\sin A = 2\sin\left(\frac{A}{2}\right)\cos\left(\frac{A}{2}\right)
\]
\[
\Rightarrow \mu = \frac{2\sin\left(\frac{A}{2}\right)\cos\left(\frac{A}{2}\right)}{\sin\left(\frac{A}{2}\right)}
= 2\cos\left(\frac{A}{2}\right)
\]
Step 3: Determine the Range of \(\mu\)
For a real prism:
\[
0^\circ<A<90^\circ
\Rightarrow 0^\circ<\frac{A}{2}<45^\circ
\]
Hence,
\[
\cos 45^\circ<\cos\left(\frac{A}{2}\right)<1
\]
\[
\Rightarrow \frac{1}{\sqrt{2}}<\cos\left(\frac{A}{2}\right)<1
\]
Multiplying throughout by 2:
\[
\boxed{1<\mu<\sqrt{2}}
\]
Was this answer helpful?
0
0
Top Questions on Ray optics and optical instruments